Chemistry X | Periodic Classification of Elements | Achievements of Mendeléev’s Periodic Table


Achievements of Mendeléev’s Periodic Table

While developing the Periodic Table, there were a few instances where Mendeleev had to place an element with a slightly greater atomic mass before an element with a slightly lower atomic mass. The sequence was inverted so that elements with similar properties could be grouped together. For example, cobalt (atomic mass 58.9) appeared before nickel (atomic mass 58.7). Looking at Table 5.4, can you find out one more such anomaly?

Further, Mendeléev left some gaps in his Periodic Table. Instead of looking upon these gaps as defects, Mendeléev boldly predicted the existence of some elements that had not been discovered at that time. Mendeléev named them by prefixing a Sanskrit numeral, Eka (one) to the name of preceding element in the same group. For instance, scandium, gallium and germanium, discovered later, have properties similar to Eka–boron, Eka–aluminium and Eka–silicon, respectively. The properties of Eka–Aluminium predicted by Mendeléev and those of the element, gallium which was discovered later and replaced Ekaaluminium, are listed as follows (Table 5.5).

clip_image002

This provided convincing evidence for both the correctness and usefulness of Mendeléev’s Periodic Table. Further, it was the extraordinary success of Mendeléev’s prediction that led chemists not only to accept his Periodic Table but also recognise him, as the originator of the concept on which it is based. Noble gases like helium (He), neon (Ne) and argon (Ar) have been mentioned in many a context before this. These gases were discovered very late because they are very inert and present in extremely low concentrations in our atmosphere. One of the strengths of Mendeléev’s Periodic Table was that, when these gases were discovered, they could be placed in a new group without disturbing the existing order.

%d bloggers like this: