Biology X | Control and Coordination | HORMONES IN ANIMALS

HORMONES IN ANIMALS

How are such chemical, or hormonal, means of information transmission used in animals? What do some animals, for instance squirrels, experience when they are in a scary situation? Their bodies have to prepare for either fighting or running away. Both are very complicated activities that will use a great deal of energy in controlled ways. Many different tissue types will be used and their activities integrated together in these actions. However, the two alternate activities, fighting or running, are also quite different! So here is a situation in which some common preparations can be usefully made in the body. These preparations should ideally make it easier to do either activity in the near future. How would this be achieved?

If the body design in the squirrel relied only on electrical impulses via nerve cells, the range of tissues instructed to prepare for the coming activity would be limited. On the other hand, if a chemical signal were to be sent as well, it would reach all cells of the body and provide the wideranging changes needed. This is done in many animals, including human beings, using a hormone called adrenaline that is secreted from the

adrenal glands. Look at Fig. 7.7 to locate these glands.

Adrenaline is secreted directly into the blood and carried to different parts of the body. The target organs or the specific tissues on which it acts include the heart. As a result, the heart beats faster, resulting in supply of more oxygen to our muscles. The blood to the digestive system and skin is reduced due to contraction of muscles around small arteries in these organs. This diverts the blood to our skeletal muscles. The breathing rate also increases because of the contractions of the diaphragm and the rib muscles. All these responses together enable the animal body to be ready to deal with the situation. Such animal hormones are part of the endocrine system which constitutes a second way of control and coordination in our body.

Continue reading

Share

Biology X | Control and Coordination | COORDINATION IN PLANTS | Movement Due to Growth

Movement Due to Growth

Some plants like the pea plant climb up other plants or fences by means of tendrils. These tendrils are sensitive to touch. When they come in contact with any support, the part of the tendril in contact with the object does not grow as rapidly as the part of the tendril away from the object. This causes the tendril to circle around the object and thus cling to it. More commonly, plants respond to stimuli slowly by growing in a particular direction. Because this growth is directional, it appears as if the plant is moving. Let us understand this type of movement with the help of an example.

Activity 7.2

  1. Fill a conical flask with water.
  2. Cover the neck of the flask with a wire mesh.
  3. Keep two or three freshly germinated bean seeds on the wire mesh.
  4. Take a cardboard box which is open from one side.
  5. Keep the flask in the box in such a manner that the open side of the box faces light coming from a window (Fig. 7.5).
  6. After two or three days, you will notice that the shoots bend towards light and roots away from light.
  7. Now turn the flask so that the shoots are away from light and the roots towards light. Leave it undisturbed in this condition for a few days.
  8. Have the old parts of the shoot and root changed direction?
  9. Are there differences in the direction of the new growth?
  10. What can we conclude from this activity?

clip_image002

Continue reading

Share